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Exact soliton solutions for a family of N coupled nonlinear Schrödinger equations
in optical fiber media

K. Nakkeeran*
Laboratoire de Physique, Universite´ de Bourgogne, UMR CNRS No. 5027, 9 avenue Savary, Boıˆte Postale 47 870, 21078 Dijon, France

~Received 8 November 1999!

We consider a family of both homogeneous and inhomogeneousN-coupled nonlinear Schro¨dinger equations
which govern simultaneous propagation ofN fields in an optical fiber with various important physical effects.
The eigenvalue problem associated with homogeneous equations is constructed with the help of the Ablowitz-
Kaup-Newell-Segur method. Using the Ba¨cklund transformation method, one-soliton solutions are explicitly
derived.

PACS number~s!: 42.81.Dp, 02.30.Jr, 05.45.Yv, 42.65.Tg
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I. INTRODUCTION

The all-soliton-optical communication link is going t
play a vital role in the rapidly growing information techno
ogy. The principle of solitons in optical fiber is based on t
exact balance between the effects, group velocity disper
~GVD! ~linear effect!, and self-phase modulation~SPM!
~nonlinear effect!. This was theoretically reported by Has
gawa and Tappert@1# and experimentally proved by Mol
lenaueret al. @2#. Propagation of optical solitons in a sing
mode fiber is governed by the famous nonlinear Schro¨dinger
~NLS! equation of the form@1,3,4#

qz5 i F1

2
qtt1uqu2qG , ~1!

whereq is the slowly varying envelope of the axial field, an
subscriptsz and t denote spatial and temporal partial deriv
tives.

For handling more channels it is necessary to propag
more than one field simultaneously. Transmission of ma
fields simultaneously in a fiber is called wavelength divisi
multiplexing ~WDM! ~i.e., fields with slightly different fre-
quencies!. In 1974, Manakov@5# derived the coupled NLS
~CNLS! equations from the NLS equation by consideri
that the total field is comprised of two fields~left and right
polarizations!. In the same work he presented the linear
genvalue problem associated with the CNLS equations
the soliton solutions using the inverse scattering transfo
~IST!. The Painleve´ analysis of the CNLS equations wa
carried out by Sahadevanet al. @6#. Soliton solutions using
the Hirota bilinear method for CNLS equations were p
sented by Radhakrishnan and Lakshmanan@7#. In @8# we
have generated the soliton solutions using the Ba¨cklund
transformation method.

When we consider the simultaneous propagation oN
nonlinear waves in a fiber, the wave dynamics of the sys
will be governed byN-CNLS equations of the form

qjz5 i F1

2
qjtt1S (

n51

N

uqnu2D qj G , j 51,2, . . . ,N. ~2!
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The Painleve´ analysis ofN-CNLS equations has been carrie
out in @6#. The Lax pair forN-CNLS equations have bee
presented by Fordy and Kulish@9#.

For transmitting pulses at a high bit rate, it is necessary
propagate ultrashort pulses. Ultrashort pulses suffer fr
higher-order effects such as higher-order dispersion~HOD!,
Kerr dispersion~also called self-steepening!, and delayed
nonlinear response@3,4,10#. HOD is a linear effect but, un-
like GVD, it broadens the pulses asymmetrically in the tim
domain. Kerr dispersion is due to the intensity dependenc
the group velocity. This forces the peak of the pulse to tra
faster than wings, which causes asymmetrical spectral bro
ening.

If we consider only the effects of HOD and Kerr dispe
sion, the wave dynamics of simultaneous propagation oN
fields is governed by theN-coupled Hirota (N-CH! equations
of the form

qjz5 i F1

2
qjtt1S (

n51

N

uqnu2D qj G
1eFqjttt13S (

n51

N

uqnu2D qjt13S (
n51

N

qn* qntD qj G ,

j 51,2, . . . ,N. ~3!

The Hirota equation was first considered by Hirota himself
@11#. Two coupled Hirota equations were first considered
Tasgal and Potasek@12#. In that they have constructed th
Lax pair and obtained the soliton solutions using IS
Radhakrishnanet al. @13# have performed the Painlev´
analysis and generated the soliton solutions for the coup
Hirota equations using the bilinear transformation meth
Using the Ba¨cklund transformation method, we have gene
ated the soliton solutions for the same@8#.

With all the higher-order effects, simultaneou
N-nonlinear waves propagation is governed by theN-coupled
higher-order nonlinear Schro¨dinger (N-CHNLS! equations
of the form
1313 ©2000 The American Physical Society
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qjz5 i S 1

2
qjtt1 (

n51

N

uqnu2qj D
2eFqjttt16(

n51

N

uqnu2qjt13qj S (
n51

N

uqnu2D
t
G ,

j 51,2, . . . ,N. ~4!

Here in Eq.~4!, we consider only the real part of the la
term. The imaginary part is related to the stimulated Ram
scattering effect. The inverse scattering transform scheme
the HNLS equation@i.e., j51 in Eq.~4!# was applied by Sasa
and Satsuma@14#. Painleve´ analysis and other related inte
grable properties of HNLS equation were carried out
@15,16#.

Coupled HNLS~CHNLS! @i.e., j 52 in Eq.~4!# equations
have been proposed and have shown that the system equ
is integrable for a particular form using Painleve´ analysis
@17#. The linear eigenvalue problem for CHNLS equatio
and the exact one-soliton solutions generated using the B¨ck-
lund transformation are given in@18#. Similar analyses were
extended to simultaneous propagation of three fields a
The bilinear form for CHNLS equations and the associa
soliton solutions were constructed in@19#. In @20#, Painleve´
analysis and the inverse scattering transform scheme
N-CHNLS equations have been presented.

In real fiber, the core medium is not homogeneo
@21,22#. There will always be some nonuniformity due
many factors, and important among them are~i! a variation
in the lattice parameters of the fiber medium, so that
distance between two neighboring atoms is not cons
throughout the fiber, and~ii ! the variation of the fiber geom
etry ~diameter fluctuations, etc.!. These nonuniformities in-
fluence various effects such as loss~or gain!, dispersion,
phase modulation, etc.@23#. When considering the inhomo
geneities in the fiber, the dynamics of the optical pu
propagation is governed by the following equation:

iqz1
1

2
qtt1uqu2q1 iF ~z!q1M ~z!t2q50, ~5!

whereF(z) andM (z) are inhomogeneous parameters rela
to gain ~or loss! and phase modulation, respectively.

Recently, the application of Eq.~5! with various forms of
inhomogeneities has been studied in various papers. The
sibility of clean and efficient nonlinear compression
chirped solitary waves with appropriate tailoring of the ga
or dispersion as a function of distance and with optio
phase modulation have been studied by Moores@24#. Kumar
and Hasegawa derived the chirped stationary solutions of
~5! with F(z)50 and M (z)5const @25#. Clarkson carried
out the Painleve´ analysis of the inhomogeneous NLS~INLS!
equation @26# and Balakrishnan discussed the invers
scattering scheme for the INLS equation@27#. Equation~5!
with M (z)50 andF(z)51/2z was studied by Burstevet al.
@28# from the soliton point of view. In that, they have pr
sented the Lax pair for the system with a nonisospectra
genvalue parameter~i.e., an eigenvalue parameter as a fun
tion of time and space!. The soliton solution and the
possibility of amplification of soliton pulses using a rapid
n
or
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increasing distributed amplification with scale lengths co
parable to the characteristic dispersion length have also b
reported by Quiroga-Teixeiroet al. @29#.

For simultaneous propagation ofN fields, system Eq.~5!
becomes

iq jz1
1

2
qjtt1qj S (

n51

N

uqnu2D 1 iF ~z!qj1M ~z!t2qj50,

j 51,2, . . . ,N. ~6!

For the propagation of two orthogonally polarized optic
fields in a nonuniform fiber media, coupled INLS equatio
of a particular form have been considered and have sh
that with suitable variable transformation, the system eq
tion can be transformed to coupled NLS equations@30#.
Similarity reduction for variable-coefficient coupled NL
equations of different form has also been studied in@31#.

In this paper, we consider theN-coupled nonlinear Schro¨-
dinger ~N-CNLS! equations~2!, N-coupled Hirota~N-CH!
equations~3!, N-coupled higher-order nonlinear Schro¨dinger
~N-CHNLS! equations~4!, and N-coupled inhomogeneou
nonlinear Schro¨dinger (N-CINLS! equations~6! @for case~i!
M (z)50 and F(z)51/@2(z1z0)#, wherez0 is a constant,
and case~ii ! M (z)5F(z)51], which govern the simulta-
neous propagation ofN fields in an optical fiber with various
important physical effects. The eigenvalue problem ass
ated with the homogeneous equations is constructed with
help of the Ablowitz-Kaup-Newell-Segur~AKNS! method
@32#. Using the Ba¨cklund transformation method, one-solito
solutions are explicitly derived.

II. N-CNLS EQUATIONS

The wave dynamics of simultaneous propagation ofN
fields in an optical fiber with only the effects of GVD an
SPM is governed by theN-CNLS equations~2!. The linear
eigenvalue problem for Eq.~2! can be written as@9#

]C

]t
5U1C,

C5~c1c2c3•••cN11!T, ~7!

where

U15S 2 il q1 q2 ••• qN

2q1* il 0 ••• 0

2q2* 0 il ••• 0

A A A � A

2qN* 0 0 ••• il

D . ~8!

l is the spectral parameter. Space evolution of eigenfunc
C is given by
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]C

]z
5V1C, ~9!

V15 il2S 21 0 0 ••• 0

0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

D
1lS 0 q1 q2 ••• qN

2q1* 0 0 ••• 0

2q2* 0 0 ••• 0

A A A � A

2qN* 0 0 ••• 0

D
1

i

2 S A q1t q2t ••• qNt

q1t* 2uq1u2 2q2q1* ••• 2qNq1*

q2t* 2q1q2* 2uq2u2
••• 2qNq2*

A A A � A

qNt* 2q1qN* 2q2qN* ••• 2uqNu2

D ,

~10!

where

A5 (
n51

N

uqnu2. ~11!

Equation~2! can be obtained from the compatibility cond
tion U1z2V1t1@U1 ,V1#50.

In order to construct the Ba¨cklund transformation of Eq
~2!, let us write down the linear eigenvalue problem in ter
of the Riccati equation. For this purpose, we introduce n
variables~or pseudopotentials!,

G j5
c j

cN11
, j 51,2, . . . ,N. ~12!

Inserting Eq.~12! into Eq. ~7!, we get

G1t522ilG11qj (
n51

N21

G j 111qN1qN* G1
2 , ~13!

G j t52qj 21* G11qN* G1G j for j 52,3, . . . ,N. ~14!

Similarly, equations forG jz can be obtained from Eq.~9!.
Now, to construct the Ba¨cklund transformation, we defin
the new transformations in the formG j→G j8 , l→l8, qj

→qj8 , which keeps the form of Eqs.~13! and~14! invariant.
The simplest transformation can be tried by settingG j8
5G j , l85l* , and after some simplifications the Ba¨cklund
transformation for Eq.~2! is obtained in the form
s
w

qj2qj855
2i ~l2l* !G1G j 11*

11 (
n51

N

uGnu2
for j 51,2, . . . ,N21,

2i ~l2l* !G1

11 (
n51

N

uGnu2

for j 5N.

~15!

In Eq. ~15!, the primed quantities refer toN-soliton solutions
and the unprimed quantities refer to (N21)-soliton solu-
tions. Using Eq.~15!, one can in principle generateN-soliton
solutions.

For instance, the trivial solutions of Eq.~2!, qj50, corre-
spond to the following pseudopotentials:

G15a1 exp@22i ~lt1l2z!#, ~16!

G j5aj for j 52,3, . . . ,N, ~17!

where aj ’s are arbitrary integration constants. So, we c
find new solutions of Eq.~2! from Eq. ~15!, which is gener-
ated from the trivial one~with l5 ib),

qj5
2baj 11*

a1*
sech~2bt !exp~2ib2z!, j 51,2, . . . ,N21,

~18!

qN5
2b

a1*
sech~2bt !exp~2ib2z!, ~19!

with the condition 11(n52
N uanu25ua1u2.

From Eqs.~18! and ~19!, one can generate theN-soliton
solutions in a recursive manner. From the one-soliton so
tion, one can calculate the pulse width, amplitude, and sh
of the pulses for WDM communication.

III. N-CH EQUATIONS

The nonlinear wave propagation of simultaneousN fields
in an optical fiber with the effects of GVD, SPM, HOD, an
Kerr dispersion is governed by theN-CH equations~3!. The
linear eigenvalue problem for Eq.~3! can be obtained using
AKNS method as

]C

]t
5U2C,

C5~c1c2c3•••cN11!T, ~20!

where

U25S 2 il q1 q2 ••• qN

2q1* il 0 ••• 0

2q2* 0 il ••• 0

A A A � A

2qN* 0 0 ••• il

D . ~21!

Space evolution of eigenfunctionC is given by
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]C

]z
5V2C, ~22!

V252~4i el32 il2!S 21 0 0 ••• 0

0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

D 2~4el22l!S 0 q1 q2 ••• qN

2q1* 0 0 ••• 0

2q2* 0 0 ••• 0

A A A � A

2qN* 0 0 ••• 0

D
2S 2i el2

i

2D S A q1t q2t ••• qNt

q1t* 2uq1u2 2q2q1* ••• 2qNq1*

q2t* 2q1q2* 2uq2u2
••• 2qNq2*

A A A � A

qNt* 2q1qN* 2q2qN* ••• 2uqNu2

D
1eS (

n51

N

~qntqn* 2qnqnt* ! q1tt12Aq1 q2tt12Aq2 ••• qNtt12AqN

2q1tt* 22Aq1* 2~q1tq1* 2q1q1t* ! 2~q2tq1* 2q2q1t* ! ••• 2~qNtq1* 2qNq1t* !

2q2tt* 22Aq2* 2~q1tq2* 2q1q2t* ! 2~q2tq2* 2q2q2t* ! ••• 2~qNtq2* 2qNq2t* !

A A A � A

2qNtt* 22AqN* 2~q1tqN* 2q1qNt* ! 2~q2tqN* 2q2qNt* ! ••• 2~qNtqN* 2qNqNt* !

D , ~23!
-

whereA5(n51
N uqnu2. Equation~3! can be obtained from the

compatibility conditionU2z2V2t1@U2 ,V2#50.
Using the same procedure, the Ba¨cklund transformation

for Eq. ~3! is found to be

qj2qj855
2i ~l2l* !G1G j 11*

11 (
n51

N

uGnu2
for j 51,2, . . . ,N21,

2i ~l2l* !G1

11 (
n51

N

uGnu2

for j 5N.

~24!

Similarly, the one-soliton solutions for theN-CH equations
are generated as

qj5
2baj 11*

a1*
sech~2bt18eb3z!exp~2ib2z!,

j 51,2, . . . ,N21, ~25!

qN5
2b

a1*
sech~2bt18eb3z!exp~2ib2z!, ~26!

with the condition 11(n52
N uanu25ua1u2.
IV. N-CHNLS EQUATIONS

In order to analyze theN-CHNLS equations~4!, it is
rather convenient to introduce variable transformations,

uj~x,T!5qj~ t,z!expF2 i

6e S t2
z

18e D G ,
T5z, ~27!

x5t2
z

12e
.

Then, Eq. ~4! reduces toN coupled complex modified
Korteweg–deVries~KdV!-type equations,

ujT1eFujxxx16(
n51

N

uunu2ujx13uj S (
n51

N

uunu2D
x
G50.

~28!

The Lax pair forN coupled complex modified KdV equa
tions ~28! is derived as

]C

]x
5U3C,

C5~c1c2c3 . . . c2N11!T, ~29!

where
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U351
2 il 0 ••• 0 0 0 0 uN

0 2 il ••• 0 0 0 0 uN*

A A � A A A A A

0 0 ••• 2 il 0 0 0 u2

0 0 ••• 0 2 il 0 0 u2*

0 0 ••• 0 0 2 il 0 u1

0 0 ••• 0 0 0 2 il u1*

2uN* 2uN ••• 2u2* 2u2 2u1* 2u1 il

2 . ~30!

Space evolution of eigenfunctionC is given by

]C

]T
5V3C, ~31!

V3524i el31
1 0 ••• 0 0 0 0 0

0 1 ••• 0 0 0 0 0

A A � A A A A A

0 0 ••• 1 0 0 0 0

0 0 ••• 0 1 0 0 0

0 0 ••• 0 0 1 0 0

0 0 ••• 0 0 0 1 0

0 0 ••• 0 0 0 0 21

2 14el21
0 0 ••• 0 0 0 0 uN

0 0 ••• 0 0 0 0 uN*

A A � A A A A A

0 0 ••• 0 0 0 0 u2

0 0 ••• 0 0 0 0 u2*

0 0 ••• 0 0 0 0 u1

0 0 ••• 0 0 0 0 u1*

2uN* 2uN ••• 2u2* 2u2 2u1* 2u1 0

2
12i el1

uuNu2 uN
2

••• u2* uN u2uN u1* uN u1uN uNx

uN*
2 uuNu2

••• u2* uN* u2uN* u1* uN* u1uN* uNx*

A A � A A A A A

u2uN* u2uN ••• uu2u2 u2
2 u2u1* u2u1 u2x

u2* uN* u2* uN ••• u2*
2 uu2u2 u2* u1* u2* u1 u2x*

u1uN* u1uN ••• u1u2* u1u2 uu1u2 u1
2 u1x

u1* uN* u1* uN ••• u1* u2* u1* u2 u1*
2 uu1u2 u1x*

uNx* uNx ••• u2x* u2x u1x* u1x 22B

2
1e1

uNx* uN2uN* uNx 0 ••• u2x* uN2u2* uNx u2xuN2u2uNx

0 uN* uNx2uNx* uN ••• u2x* uN* 2u2* uNx* u2xuN* 2u2uNx*

A A � A A

u2uNx* 2u2xuN* u2uNx2u2xuN ••• u2x* u22u2* u2x 0

u2* uNx* 2u2x* uN* u2* uNx2u2x* uN ••• 0 u2* u2x2u2x* u2

u1uNx* 2u1xuN* u1uNx2u1xuN ••• u1u2x* 2u1xu2* u1u2x2u1xu2

u1* uNx* 2u1x* uN* u1* uNx2u1x* uN ••• u1* u2x* 2u1x* u2* u1* u2x2u1x* u2

4BuN* 1uNxx* 4BuN1uNxx ••• 4Bu2* 1u2xx* 4Bu21u2xx

u1x* uN2u1* uNx u1xuN2u1uNx 24BuN2uNxx

u1x* uN* 2u1* uNx* u1xuN* 2u1uNx* 24BuN* 2uNxx*

A A A

u2u1x* 2u2xu1* u2u1x2u2xu1 24Bu22u2xx

u2* u1x* 2u2x* u1* u2* u1x2u2x* u1 24Bu2* 2u2xx*

u1x* u12u1* u1x 0 24Bu12u1xx

0 u1* u1x2u1x* u1 24Bu1* 2u1xx*

4Bu1* 1u1xx* 4Bu11u1xx 0

2 ,

~32!
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where B5(n51
N uunu2. Equation~28! can be obtained from

the compatibility conditionU3z2V3t1@U3 ,V3#50 @and Eq.
~4! simultaneously#.

Using the same procedure, the Ba¨cklund transformation for
Eq. ~28! is found to be

uj2uj855
2i ~l2l* !G1G2 j 11*

11 (
n51

2N

uGnu2

for j 51,2, . . . ,N21,

2i ~l2l* !G1

11 (
n51

2N

uGnu2
for j 5N.

~33!

Similarly, the one-soliton solutions for Eq.~28! ~simulta-
neously forN-CHNLS equations! are generated as

uj5
2ba2 j 11*

a1*
sech~2bt28eb3z!, j 51,2, . . . ,N21,

~34!

uN5
2b

a1*
sech~2bt28eb3z! ~35!

with the condition 11(n52
2N uanu25ua1u2.

V. N-CINLS EQUATIONS

With the effects of inhomogeneities and phase modu
tion, wave dynamics of the simultaneous propagation oN
optical pulses in a fiber medium with the effects of GVD a
SPM alone is given by

iq jz1
1

2
qjtt1qj S (

n51

N

uqnu2D 1 iF ~z!qj1M ~z!t2qj50,

j 51,2, . . . ,N. ~36!

Here we consider the following two cases for which t
system equation~36! is completely integrable and possess
Lax pair and exact soliton solutions through Ba¨cklund trans-
formation.

Case~i!: M (z)50 andF(z)51/@2(z1z0)#, wherez0 is a
constant. With these conditions, Eq.~36! will become

iq jz1
1

2
qjtt1qj S (

n51

N

uqnu2D 1
i

2~z1z0!
qj50,

j 51,2, . . . ,N. ~37!

The Lax pair associated with Eq.~37! is contructed as

]C

]t
5U4C,

C5~c1c2c3•••cN11!T, ~38!

where
-

s

U45S 2 il q1 q2 ••• qN

2q1* il 0 ••• 0

2q2* 0 il ••• 0

A A A � A

2qN* 0 0 ••• il

D . ~39!

l is the nonisospectral parameter given by

l52
2m1t

2~z1z0!
, ~40!

wherem is the hidden spectral parameter.
The space evolution of eigenfunctionC is given by

]C

]z
5V4C, ~41!

V45 il2S 21 0 0 ••• 0

0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

D
1lS 0 q1 q2 ••• qN

2q1* 0 0 ••• 0

2q2* 0 0 ••• 0

A A A � A

2qN* 0 0 ••• 0

D
1

i

2 S A q1t q2t ••• qNt

q1t* 2uq1u2 2q2q1* ••• 2qNq1*

q2t* 2q1q2* 2uq2u2
••• 2qNq2*

A A A � A

qNt* 2q1qN* 2q2qN* ••• 2uqNu2
D ,

~42!

where

A5 (
n51

N

uqnu2. ~43!

Equation~37! can be obtained from the compatibility cond
tion U4z2V4t1@U4 ,V4#50.

Using the same procedure, the Ba¨cklund transformation
for Eq. ~37! is found to be
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qj2qj855
2i ~l2l* !G1G j 11*

11 (
n51

N

uGnu2
for j 51,2, . . . ,N21,

2i ~l2l* !G1

11 (
n51

N

uGnu2

for j 5N.

~44!

Similarly, the one-soliton solutions for theN-CINLS equa-
tions ~37! are generated as

qj5
2maj 11*

a1* ~z1z0!
sechS 2mt

z1z0
DexpS i

z1z0
~ t2/222m2! D ,

j 51,2, . . . ,N21, ~45!

qN5
2m

a1* ~z1z0!
sechS 2mt

z1z0
DexpS i

z1z0
~ t2/222m2! D ,

~46!

with the condition 11(n52
N uanu25ua1u2.

It is interesting to mention that under the variable tra
formations

qj~z,t !5
A2z0

z1z0
Qj~Z,T!expS i t 2

2~z1z0! D ,

Z5
zz0

z1z0
, T5

A2tz0

z1z0
, ~47!

the N-CINLS equations ~37! can be transformed into
N-CNLS equations of the form
-

iQ jZ1QjTT12Qj (
n51

n

uQnu250. ~48!

Case~ii !: M (z)5F(z)51. With this choice, theN-CINLS
equations~36! become

iq jz1qjtt12qj S (
n51

N

uqnu2D 1 iq j1t2qj50,

j 51,2, . . . ,N. ~49!

The Lax pair associated with Eq.~49! is constructed as

]C

]t
5U5C,

C5~c1c2c3•••cN11!T, ~50!

where

U55S 2 il Q1 Q2 ••• QN

2Q1* il 0 ••• 0

2Q2* 0 il ••• 0

A A A � A

2QN* 0 0 ••• il

D , ~51!

whereQj5qj exp(2it2/2) andl is the nonisospectral param
eter given by

l5m exp~22z!, ~52!

wherem is the hidden spectral parameter.
The space evolution of eigenfunctionC is given by

]C

]z
5V5C, ~53!
V552il2S 21 0 0 ••• 0

0 1 0 ••• 0

0 0 1 ••• 0

A A A � A

0 0 0 ••• 1

D 12lS i t Q1 Q2 ••• QN

2Q1* 2 i t 0 ••• 0

2Q2* 0 2 i t ••• 0

A A A � A

2QN* 0 0 ••• 2 i t

D
1 iS (

n51

n

uQnu2 Q1t12i tQ1 Q2t12i tQ2 ••• QNt12i tQN

Q1t* 22i tQ1* 2uQ1u2 2Q2Q1* ••• 2QNQ1*

Q2t* 22i tQ2* 2Q1Q2* 2uQ2u2 ••• 2QNQ2*

A A A � A

QNt* 22i tQN* 2Q1QN* 2Q2QN* ••• 2uQNu2

D . ~54!



i-

rs
t i

ysi-

to
tion
act

by
is-
f
bed
po-
er-

the
ear

r

red.

in
a-

the
-

ua-

ith
act

1320 PRE 62K. NAKKEERAN
Equation~49! can be obtained from the compatibility cond
tion U5z2V5t1@U5 ,V5#50.

Using the same procedure, the Ba¨cklund transformation
for Eq. ~49! is found to be

Qj2Qj855
2i ~l2l* !G1G j 11*

11 (
n51

N

uGnu2
for j 51,2, . . . ,N21,

2i ~l2l* !G1

11 (
n51

N

uGnu2

for j 5N.

~55!

Similarly, the one-soliton solutions for theN-CINLS equa-
tions ~49! are generated as

qj5
2a2aj 11*

a1*
sechS 2a2t18Ez

a1a2dzD
3expF22ia1t24i Ez

~a1
22a2

2!dz1 i t 2/2G ,
j 51,2, . . . ,N21, ~56!

qN5
2a2

a1*
sechS 2a2t18Ez

a1a2dzD
3expF22ia1t24i Ez

~a1
22a2

2!dz1 i t 2/2G , ~57!

where a15k1 exp(22z), a25k2 exp(22z) (k1 ,k2 are real
and imaginary parts ofm!, and with the condition 1
1(n52

N uanu25ua1u2.

VI. DISCUSSIONS AND CONCLUSION

In Sec. II, we found that Manakov modelN-CNLS equa-
tions allow soliton-type pulse propagation in optical fibe
From the complete integrability of the system equation, i
ev

, J
.
s

clear that for the simultaneous propagation ofN nonlinear
optical fields, there exists exact balancing between the ph
cal effects of GVD and SPM~with the inclusion of cross-
phase modulation also!.

N-CH equations include the higher-order effects due
HOD and Kerr dispersion. For the simultaneous propaga
of N fields, the existence of the Lax pair proves the ex
balancing between the asymmetrical temporal broadening
HOD and the asymmetrical spectral broadening by Kerr d
persion. Similarly, in Sec. IV, we find the possibility o
soliton-type pulse propagation for the fiber system descri
by N-CHNLS equations. Here also the asymmetrical tem
ral broadening of optical pulses due to HOD is count
balanced by the asymmetrical spectral broadening due to
combined effects of Kerr dispersion and delayed nonlin
effects. We have already shown through Painleve´ analysis
that only for this form ofN-CHNLS equations does the fibe
system allow soliton-type pulse propagation@20#.

Finally, in Sec. V, simultaneous propagation ofN nonlin-
ear pulses in inhomogeneous optical fibers was conside
The first case of integrableN-CINLS equations dealt with the
spatial inhomogeneity. A similar kind of system equation
an erbium-doped optical fiber system for single field prop
gation has been discussed in@33#. The second case is with
phase modulation. This integrable case is also related to
dispersion-managed solitons. In@34#, one can see the rela
tionship between the system equation~49! ~for the single-
field case! and the dispersion-managed fiber system eq
tion.

Thus, in this paper, we have considered theN-CNLS,
N-CH, N-CHNLS, and two cases ofN-CINLS equations
which govern simultaneous propagation ofN fields in a fiber
medium with various important physical effects. Then, w
the help of the respective linear eigenvalue problem, ex
one-soliton solutions have been generated from the Ba¨cklund
transformations.
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